
An Investigation into Structured Environments
Özlem Çakmak

Technische Universität München
Munich, Germany

Email: c.oezlem@mytum.de

Dominik Meyer
Technische Universität München

Munich, Germany
Email: meyerd@mytum.de

Abstract—Even simple Reinforcement Learning problems can
have large state spaces. Dealing with those is challenging and
can lead to high computational costs. A way to reduce large
state spaces is exploiting symmetries in the state set. In this
paper we focus on temporal-difference learning – especially on
the Sarsa algorithm – and study the occurrence of symmetries
in Reinforcement Learning problems by using the example of
the board game tic-tac-toe. We study different methods to detect
and exploit those symmetries to obtain a more efficient learning
process.

I. INTRODUCTION

Reinforcement Learning (RL) is a machine learning method
which is particularly suitable for learning problems without a
complete knowledge of the environment. The basic elements
of RL are the learning agent and an uncertain environment.
The agent learns through experience from interaction with
the environment to achieve a given goal by receiving positive
or negative rewards from this environment depending on the
performed actions.

Fig. 1. Interaction between agent and environment [1]. Starting from a state
St with the corresponding reward Rt, the agent takes an action At. In return,
the environment responds with the successor state St+1 and reward Rt+1.

The learning environment is considered a Markov Deci-
sion Process (MDP, [1]) which is defined by the quintuple
(S,A,P,R, γ). It consists of a set of states S, a set of
actions A, the transition probability P for transitioning from
the current state s to the successor state s′ by taking an action
a ∈ A. The reward r along this transition is provided by the
reward function R. The last element γ ∈ [0, 1] is a discount
factor which discounts future rewards. If the state and action
set are both finite, it is called a finite MDP. S+ is the set
of all states plus the terminal states which end the current
interaction between agent and environment. These segments
of agent-environment interactions are called episodes. After
reaching a terminal state the agent is reset to a starting state s0
and a new episode begins. RL tasks consisting of subsequent

episodes are called episodic tasks. In continuous RL tasks the
agent environment interaction goes on continuously without
reaching a terminal state.

Besides the reward function there are three other main sub-
elements of RL: a policy, a value function and an optional
model of the environment [1]. An optimal policy maps to each
state s an optimal action a and such controls the behavior of
the learning agent. While rewards can be seen as pleasure and
pain and indicate the immediate outcome of an action, the
value function assigns to each state a value indicating which
behavior is good in the long run. The value vπ of a state s
is defined by the return Gt – which is the sum of discounted
future rewards – that can be expected starting from this specific
state s and following the policy π

vπ(s):=Eπ[Gt|St = s]

=Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
. (1)

A model of the environment is not necessarily required but
if available it can include information like predictions of the
successor state or reward.

There are three algorithm types for solving a RL problem:
dynamic programming (DP), Monte Carlo (MC) methods and
temporal-difference (TD) learning. This paper focuses on TD
methods.

II. TEMPORAL-DIFFERENCE LEARNING

TD methods have some major advantages over DP and
MC methods: In comparison to DP methods there is no need
for a model, rewards or transition probabilities [1]. Thus TD
methods can deal with uncertain environments and are further
able to adapt to changes in the environment. The advantage
over MC methods is that TD methods are fully incremental,
meaning that every step contributes to the learning process and
there is no need to wait until an episode has ended. Therefore,
TD methods can also be applied to continuing tasks. Also TD
methods bootstrap – i.e. new estimates are based on previous
estimates – and they are proven to converge under certain
constraints.

The update rule for the simplest TD algorithm, TD(0), is
denoted as

V (St)←V (St) + α[Rt+1 + γV (St+1)− V (St)]. (2)

In this method, the state values are stored in a table. One
episode of TD(0) looks as follows: First, all state values are
initialized with an arbitrary default value1 and the first state
s of an episode is determined. Then an action a is selected
according to the policy π. After performing that action the
reward r and the successor state s′ can be observed. With
this information the value of the current state s is updated
according to the TD(0) update rule and s′ is set as the new
current state s. This is repeated until a terminal state is reached
which ends the current episode.

Sarsa algorithm: The Sarsa algorithm uses an action-value
function qπ(s, a) instead of the state-value function (1) and
indicates how valuable it is to take an action a in a state
s. So it maps a value to an state-action pair instead of just
mapping a value to a state. The advantage of Sarsa over other
TD algorithms is that transition probabilities are not necessary.
Also the consideration of state-action pairs instead of just
states is more convenient in terms of symmetry reduction
which will be discussed in the next chapter.

1) Sample-average method: The sample-average method
estimates the true value of an action a by averaging over all
received rewards R1, R2, . . . , RKa

after taking that action Ka

times. The estimated value Qt(a) of action a at time step t is
then

Qt(a) =
R1 +R2 + · · ·+RKa

Ka
. (3)

A default value is defined for Ka = 0, e.g. zero and for
Ka → ∞ the estimated action-value Qt(a) converges to the
true action-value q∗(a).

2) Incremental updates: One drawback of the sample-
average method are the increasing memory and computational
requirements as t increases. To derive an incremental update
formula we consider Qk as the action-value estimate of an
action a for its kth reward Rk which is the average of its first
k − 1 rewards. The average of all k rewards is then

Qk+1 =
1

k

k∑
i=1

Ri

=
1

k

(
Rk +

k−1∑
i=1

Ri

)
=

1

k
(Rk + (k − 1)Qk)

= Qk +
1

k
[Rk −Qk] . (4)

The update rule (4) in its general form

NewEstimate← OldEstimate

+ StepSize[Target−OldEstimate] (5)

is often used in RL algorithms. By moving toward the target
the estimation error [Target−OldEstimate] is reduced. The
step-size parameter SteStepSize can either vary with time or

1optimistic initial values

be set to a constant value in order to adapt to changes in the
environment which is necessary in non-stationary problems.

The corresponding computation of (1) for action-values is
denoted as

qπ(s, a):=Eπ[Gt|St = s,At = a]

=Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]

=Eπ

[
Rt+1 + γ

∞∑
k=0

γkRt+k+2

∣∣∣∣∣St = s,At = a

]
=Eπ [Rt+1 + γqπ(St+1, At+1)|St = s,At = a] .(6)

The Sarsa algorithm uses (6) as a target. As a bootstrapping
method it substitutes the true action-value qπ – i.e. the mean
reward that is received after taking that action – by its current
estimate. From this and (4) follows the update rule for the
Sarsa algorithm

Q(St, At)←Q(St, At)

+α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]. (7)

III. SYMMETRIES IN RL

One of the problems in RL tasks are large state spaces,
since the storage and time complexity grows with the number
of states. As a result of this problem either the learning process
takes too long or the states can not be visited often enough
to obtain a reliable approximation of the state or state-action
values.

An approach to solve this problem is to take account of
symmetries in RL algorithms. By doing that the primary MDP
can be mapped to a reduced MDP with a smaller state and
action set [2].

Symmetries in RL problems can appear in different forms
which is shown in the following figure:

Fig. 2. a) State symmetry b) State-action symmetry

The big circles in the graphs depict the states, the dots the
actions.

The first graph shows the case of state symmetry. s1 and
s2 are symmetric if the transition probability p(s′1, r1|s1, a1)
for the transition from s1 to s′1 by taking the action a1 and
receiving the reward r1 is the same as p(s′2, r2|s2, a2).

The second graph shows the case of symmetric state-action
pairs: Here the states s1 and s2 which are not symmetric

according to the first case can lead to an equivalent successor
state s′.

A concrete example for symmetries in RL is provided
by board games. In this case symmetries occur as reflection
symmetries or rotations of the board, the interchangeability of
the players or as different state-action pairs [3]. The following
figure shows how the symmetries depicted in Fig. 2 occur in
tic-tac-toe.

Fig. 3. a) State symmetry b) State-action symmetry

In Fig. 3 a) s2, a2 and s′2 can be obtained by rotating s1,
a1 and s′1, respectively. If the initial states and actions in Fig.
3 b) are compared separately, one state or action can not be
obtained by rotating or reflecting the other. However, the state-
action pairs (s1|a1) and (s2|a2) lead to a single successor state
s′ and thus are symmetric in terms of state-action symmetry.
So a greater number of symmetries can be exploited which is
why we chose the Sarsa algorithm. One possibility to exploit
symmetries in RL algorithms is the set-states approach.

IV. SET-STATES

The set-states approach defines a new, smaller state set C
with the states c which represent the different symmetries
occurring in S. For this purpose each state s of S shall be
assigned to a single state c of C. The challenge herein is to
perform the classification of the states automatically, hence
even small problems have large state sets and therefore, the
manual classification would get very tedious.

If a model is available one could detect equivalent states by
comparing their transition probabilities within a tolerance of
ε. For the usual case without an existing model the transition
probabilities could be approximated from several runs of
the algorithm. We investigate another approach which is to
execution of the Sarsa algorithm until the Q-values converge
and assign state-action pairs with same Q-values within a
certain tolerance level to the representative states c.

V. EXPERIMENTAL RESULTS

To test the set-states approach, we chose the familiar two-
player board game tic-tac-toe. The player that first manages
to place three of his respective marks in a horizontal, vertical
or diagonal line wins.

This game is a deterministic problem, so performing an
action in a specific state always leads to the same successor
state. Therefore, all transition probabilities equal to one and
are not distinctive for the different states. For this reason

we implemented the Sarsa algorithm and used Q-Values for
mapping the states s to their representative states c.

The Sarsa player was trained as follows: For faster learning
we used Sarsa(λ). The parameter λ indicates the use of
eligibility traces. They track the lastly used state-action pairs,
so that not only the last state-action pair is updated when a
reward is obtained, but all state-action pairs that led to this
reward. The most recent step gets the full update, the previous
step gets a percentage of λ2 of the full update and so on.

A simple random player (player 2) was chosen as an
opponent which randomly places its mark on a free spot
following the discrete uniform distribution.

Preceding tests showed that an optimistic initial value of
1 leads to faster learning and also that 100 000 episodes are
sufficient for this problem.

The set of states exists of all states of the game board which
can appear to the Sarsa player (player 1). In these states the
number of marks by player 2 is either equal or one more than
the number of marks by player 1.

The set of states exists of all game boards in which it is
the turn of the Sarsa player (player 1). I.e. in each state the
number of marks by player 2 is either equal or one more than
the number of marks by player 1. The action set consists of
up to 9 actions depending on the number of free spots of a
particular state. The Q-values are stored in a table (Q-table).
For a simple way to index the Q-values, 0 is used as a mark
for free spots and 1 and 2 for player 1 and 2, respectively. By
vectorizing the game board a number with base 3 is obtained
which easily can be converted to a decimal number and used
to index the states.

The following table contains all parameters for the test
setup:

Parameter Training Value Testing Value
Number of tasks 10 10

Number of episodes 100 000 1 000
Initial Q-values 1 1

Reward ±1 ±1
ε 0.1 0
α 0.5 0
λ 0.7 0
γ 1 0

TABLE I
PARAMETERS FOR THE TRAINING AND TESTING PHASES.

Training: In the first run the Sarsa player is trained with
the parameters given above. After that, we have the mean Q-
values of ten tasks. This mean values are used to detect the
symmetric states. For this we compare the Q-values of one
state sk to the Q-values of all other states si. If the relative
error

e =
Q(sk)−Q(si)

Q(sk)

of each action is smaller than one, the mean squared error
is calculated and saved. Now a threshold can be set for the
MSE to consider state sk as the set-state of si. The result
is a lookup table for every state. If there is an entry for a

given state, the Q-values of the representative state is used
and updated instead. It follows a second run with the same
parameters besides that the lookup table is used before every
update step.

Testing: In both training runs the Q-tables are stored after
one third, two thirds and the total number of episodes. Letting
the Sarsa player run again with these Q-tables and excluding
the learning process during these runs, the following results
are obtained.

Q-table after Score after 1st run Score after 2nd run
t episodes (Won - Lost - Draw) (Won - Lost - Draw)

EXPERIMENT 1

3334 945 - 3 - 52 948 - 3 - 49
6668 930 - 4 - 66 929 - 9 - 62

10 000 938 - 2 - 60 931 - 9 - 60
EXPERIMENT 2

3334 940 - 3 - 57 941 - 3 - 56
6668 944 - 4 - 52 936 - 8 - 56

10 000 950 - 6 - 44 952 - 4 - 44

TABLE II
RESULTS OF THE EXPERIMENTS

In the training phase of experiment 1, α and ε are con-
stant. For experiment 2, α decreases with the number of
visits k of (s|a) and ε with the number of episodes t, i.e.
α = 10/(k + 19), ε = 4000/(t + 39 999). Table II shows
that the difference between the results with and without the
exploitation of symmetries is not significant. This can also be
seen in Fig. 4.

Fig. 4. Courses of Q(s = 0, a = 5) after the training phases of experiment 1.
The case without symmetry exploitation is depicted in a) and with symmetry
exploitation in b)

However, the overall number of wins in experiment 2 is
higher than in experiment 1. But this is highly dependent on
the decreasing parameters chosen for α and ε and the threshold
set for the relative error during the detection of symmetric
states. This threshold determines which states are assigned to
a set-state and thus the size of the reduced set of states. A
higher threshold leads to a greater reduction of the reduced
set of states but also to incorrect assignments of states to set-
states. The incorrectly assigned states cause a wrong update
of the set-state and this again leads to wrong optimal actions
for correctly assigned states. Eventually, the results are worse
than without the consideration of symmetries. In Table III a

small threshold of 0.08 was used. Here, the majority of the
assignments to set-states was correct but many states remained
unassigned.

Experiment 1 Experiment 2
size of original set of states 4520 4520
size of reduced set of states 3417 3416
actual number of set-states 337 337
correctly classified set-states 316 309

TABLE III
RESULTS OF THE EXPERIMENTS

VI. CONCLUSION

The experiments showed that the exploitation of symmetries
is strongly dependent on the correct detection of symmetric
states. Also that using the mean squared error of Q-values as a
similarity measure is not suited for this task. Therefore, further
experiments with other similarity measures are necessary. Also
the correct adjustment of the decreasing parameters of α and
ε have a huge impact on the results and should be taken into
account.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[2] R. Fitch et al., Structural abstraction experiments in reinforcement
learning, AI 2005: Advances in Artificial Intelligence. Springer, 2005.

[3] S. Schiffel, Symmetry Detection in General Game Playing, Association
for the Advancement of Artificial Intelligence. 2010.

